Itexamdump S90.08B 최신 PDF 버전 시험 문제집을 무료로 Google Drive에서 다운로드하세요: https://drive.google.com/open?id=1rXqUc7rYBWCNs0nfS62Y0XKM5AdEL6JR

Itexamdump의SOA인증 S90.08B시험덤프공부가이드 마련은 현명한 선택입니다. SOA인증 S90.08B덤프구매로 시험패스가 쉬워지고 자격증 취득율이 제고되어 공을 많이 들이지 않고서도 성공을 달콤한 열매를 맛볼수 있습니다.

S90.08B 시험을 통과하기 위해서는, 후보자들은 마이크로서비스를 활용한 SOA 솔루션을 설계 및 아키텍처할 수 있는 능력과 함께, 관련 최상의 실천 방법 및 산업 표준에 대한 지식을 증명해야 합니다. 이 시험은 SOA 디자인 및 아키텍처 분야에서 경력을 더욱 발전시키려는 전문가들과, 이 분야 전문가를 고용하려는 기업들에게 이상적입니다. 이 시험을 통과함으로써 후보자들은 고품질, 확장 가능하고 안정적인 SOA 솔루션을 제공하는 전문성과 열정을 증명할 수 있습니다.

SOA S90.08B 시험은 서비스 지향 아키텍처(SOA) 및 마이크로서비스와 함께 SOA 디자인 및 아키텍처에 중점을 둔 인증 시험입니다. 이 시험은 SOA 디자인 및 아키텍처에 대한 지식과 기술을 향상시키기를 원하는 전문가들을 대상으로합니다. 서비스 식별, 서비스 모델링, 서비스 디자인 패턴, 서비스 지향 분석 및 디자인, 마이크로서비스 아키텍처 등 다양한 주제를 다룹니다.

SOA S90.08B 시험은 마이크로서비스를 이용한 서비스 지향 아키텍처(SOA) 솔루션을 설계하고 아키텍처를 구성하는 능력을 평가하는 인증 시험입니다. 이 시험은 Certified SOA Architect 프로그램의 일환으로, SOA 기반 솔루션을 디자인하고 개발하며 구현하는 데 필요한 기술과 지식을 숙달하고자 하는 전문가들을 대상으로 합니다. S90.08B 시험은 특히 마이크로서비스를 이용한 SOA 솔루션을 설계하고 아키텍처를 구성하는 능력을 테스트하기 위해 고안되었습니다.

>> SOA S90.08B최신버전 인기 덤프문제 <<

S90.08B인증시험대비자료 - S90.08B최신 인증시험 덤프데모

Itexamdump는 엘리트한 전문가들의 끊임없는 연구와 자신만의 노하우로 SOA S90.08B덤프자료를 만들어 냄으로 여러분의 꿈을 이루어드립니다. 기존의 SOA S90.08B시험문제를 분석하여 만들어낸 SOA S90.08B덤프의 문제와 답은 실제시험의 문제와 답과 아주 비슷합니다. SOA S90.08B덤프는 합격보장해드리는 고품질 덤프입니다. Itexamdump의 덤프를 장바구니에 넣고 페이팔을 통한 안전결제를 진행하여 덤프를 다운받아 시험합격하세요.

최신 Certified SOA Architect S90.08B 무료샘플문제 (Q10-Q15):

질문 # 10
S90.08B-8706f666f9d91685d7b3234acf76f7b0.jpg
Service A is an entity service that provides a Get capability which returns a data value that is frequently changed.
Service Consumer A invokes Service A in order to request this data value (1). For Service A to carry out this request, it must invoke Service B (2), a utility service that interacts (3, 4) with the database in which the data value is stored. Regardless of whether the data value changed, Service B returns the latest value to Service A (5), and Service A returns the latest value to Service Consumer A (6).
The data value is changed when the legacy client program updates the database (7). When this change will occur is not predictable. Note also that Service A and Service B are not always available at the same time.
Any time the data value changes, Service Consumer A needs to receive It as soon as possible. Therefore, Service Consumer A initiates the message exchange shown In the figure several times a day. When it receives the same data value as before, the response from Service A Is ignored. When Service A provides an updated data value, Service Consumer A can process it to carry out its task.
The current service composition architecture is using up too many resources due to the repeated invocation of Service A by Service Consumer A and the resulting message exchanges that occur with each invocation.
What steps can be taken to solve this problem?

  • A. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service Consumer A and Service A. This way, every time the data value is updated, an event is triggered and Service A, acting as the publisher, can notify Service Consumer A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service Consumer A and Service A so that the event notification message sent out by Service A will be received by Service Consumer A, even when Service Consumer A is unavailable.
  • B. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service A and Service B. This way, every time the data value is updated, an event is triggered and Service B, acting as the publisher, can notify Service A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service A and Service B so that the event notification message sent out by Service B will be received by Service A, even when Service A is unavailable.
  • C. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service Consumer A and a database monitoring agent introduced through the application of the Service Agent pattern. The database monitoring agent monitors updates made by the legacy client to the database. This way, every time the data value is updated, an event is triggered and the database monitoring agent, acting as the publisher, can notify Service Consumer A, which acts as the subscriber.
    The Asynchronous Queuing pattern can be applied between Service Consumer A and the database monitoring agent so that the event notification message sent out by the database monitoring agent will be received by Service Consumer A, even when Service Consumer A is unavailable.
  • D. The Asynchronous Queuing pattern can be applied so that messaging queues are established between Service A and Service B and between Service Consumer A and Service A. This way, messages are never lost due to the unavailability of Service A or Service B.

정답:B

설명:
Explanation
This solution is the most appropriate one among the options presented. By using the Event-Driven Messaging pattern, Service A can be notified of changes to the data value without having to be invoked repeatedly by Service Consumer A, which reduces the resources required for message exchange. Asynchronous Queuing ensures that the event notification message is not lost due to the unavailability of Service A or Service B. This approach improves the efficiency of the service composition architecture.


질문 # 11
Refer to Exhibit.
S90.08B-f1de3332839c5a87634212104d2263de.jpg
Service Consumer A and Service A reside in Service Inventory A. Service B and Service C reside in Service Inventory B. Service D is a public service that can be openly accessed via the World Wide Web. The service is also available for purchase so that it can be deployed independently within IT enterprises. Due to the rigorous application of the Service Abstraction principle within Service Inventory B, the only information that is made available about Service B and Service C are the published service contracts. For Service D, the service contract plus a service level agreement (SLA) are made available. The SLA indicates that Service D has a planned outage every night from 11:00pm to midnight.
You are an architect with a project team that is building services for Service Inventory A. You are told that the owners of Service Inventory A and Service Inventory B are not generally cooperative or communicative. Cross-inventory service composition is tolerated, but not directly supported. As a result, no SLAs for Service B and Service C are available and you have no knowledge about how available these services are. Based on the service contracts you can determine that the services in Service Inventory B use different data models and a different transport protocol than the services in Service Inventory A. Furthermore, recent testing results have shown that the performance of Service D is highly unpredictable due to the heavy amount of concurrent access it receives from service consumers from other organizations. You are also told that there is a concern over how long Service Consumer A will need to remain stateful while waiting for a response from Service A.
What steps can be taken to solve these problems?

  • A. The Asynchronous Queuing pattern can be applied to position a message queue between Service A and Service B, between Service A and Service C, and between Service A and Service D. Additionally, a separate messaging queue is positioned between Service A and Service Consumer A. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B, between Service A and Service C, and between Service A and Service D. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house. The Legacy Wrapper pattern can be further applied to wrap Service D with a standardized service contract that is in compliance with the design standards used in Service Inventory B.
  • B. The Containerization pattern can be applied to establish an environment for Service A to perform its processing autonomously. This gives Service A the flexibility to provide Service Consumer A with response messages consistently. The Asynchronous Queuing pattern can be applied so that a central messaging queue is positioned between Service A and Service B, between Service A and Service C, and between Service A and Service D. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C.
  • C. The Event-Driven Messaging pattern can be applied to establish a subscriber-publisher relationship between Service Consumer A and Service A. This gives Service A the flexibility to provide its response to Service Consumer A whenever it is able to collect the three data values without having to require that Service Consumer A remain stateful. The Asynchronous Queuing pattern can be applied to position a central messaging queue between Service A and Service B and between Service A and Service C. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house and made part of Service Inventory A.
  • D. The Asynchronous Queuing pattern can be applied to position a central messaging queue between Service A and Service B and between Service A and Service C and so that a separate messaging queue is positioned between Service A and Service Consumer A. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house. The Legacy Wrapper pattern can be further applied to wrap Service D with a standardized service contract that is in compliance with the design standards used in Service Inventory A.

정답:A

설명:
The Asynchronous Queuing pattern is applied to position a messaging queue between Service A, Service B, Service C, Service D, and Service Consumer A. This ensures that messages can be passed between these services without having to be in a stateful mode.
The Data Model Transformation and Protocol Bridging patterns are applied to enable communication between Service A and Service B, Service A and Service C, and Service A and Service D, despite their different data models and transport protocols.
The Redundant Implementation pattern is applied to bring a copy of Service D in-house to ensure that it can be accessed locally and reduce the unpredictability of its performance.
The Legacy Wrapper pattern is applied to wrap Service D with a standardized service contract that complies with the design standards used in Service Inventory B. This is useful for service consumers who want to use Service D but do not want to change their existing applications or service contracts.
Overall, this approach provides a comprehensive solution that addresses the issues with Service A, Service B, Service C, and Service D, while maintaining compliance with the Service Abstraction principle.


질문 # 12
S90.08B-020cfd36f368313a755ca014d7ed596a.jpg
When Service A receives a message from Service Consumer A (1), the message is processed by Component A. This component first invokes Component B (2), which uses values from the message to query Database A in order to retrieve additional data. Component B then returns the additional data to Component A. Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value.
Component C then returns the data value back to Component A.
Next, Component A sends some of the data It has accumulated to Component D (4), which writes the data to a text file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to Component A. Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6).
Components A, B, C, and D belong to the Service A service architecture. Database A, the legacy system and the file folders are shared resources within the IT enterprise.
Service A is an entity service with a service architecture that has grown over the past few years. As a result of a service inventory-wide redesign project, you are asked to revisit the Service A service architecture in order to separate the logic provided by Components B, C, and D into three different utility services without disrupting the behavior of Service A as it relates to Service Consumer A.
What steps can be taken to fulfill these requirements?

  • A. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate utility service that wraps the shared database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate utility service that acts as a wrapper for the legacy system API. Component D can also be separated into a separate service and the Event-Driven Messaging pattern can be applied to establish a publisher-subscriber relationship between this new service and Component A. The interaction between Service Consumer A and Component A can then be redesigned so that Component A first interacts with Component B and the new wrapper service. Service A then issues a final message back to Service Consumer A. The Service Composability principle can be further applied to Service A and the three new wrapper utility services so that all four services are optimized for participation in the new service composition. This will help make up for any performance loss that may result from splitting the three components into separate services.
  • B. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate wrapper utility service that wraps the shared database. The State Repository and State Messagingpatterns can be applied so that a messaging repository is positioned between Component A and Component C, thereby enabling meta data-driven communication during the times when the legacy system may be unavailable or heavily accessed by other parts of the IT enterprise. The Service Fagade pattern can be applied so that a fagade component is added between Component A and Component D so that any change in behavior can be compensated. The Service Statelessness principle can be further applied to Service A to help make up for any performance loss that may result from splitting the component into a separate wrapper utility service.
  • C. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate wrapper utility service that wraps the shared database. The Asynchronous Queuing pattern can be applied so that a messaging queue is positioned between Component A and Component C, thereby enabling communication during the times when the legacy system may be unavailable or heavily accessed by other parts of the IT enterprise. The Service Fagade pattern can be applied so that a fagade component is added between Component A and Component D so that any change In behavior can be compensated.
    The Service Autonomy principle can be further applied to Service A to help make up for any performance loss that may result from splitting the component into a separate wrapper utility service.
  • D. The Legacy Wrapper pattern can be applied so that Component B Is separated into a separate utility service that wraps the shared database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate utility service that acts as a wrapper for the legacy system API. The Legacy Wrapper pattern can be applied once more to Component D so that it is separated into another utility service that provides standardized access to the file folder. The Service Fagade pattern can be applied so that three fagade components are added: one between Component A and each of the new wrapper utility services. This way, the fagade components can compensate for any change in behavior that may occur as a result of the separation. The Service Composability principle can be further applied to Service A and the three new wrapper utility services so that all four services are optimized for participation in the new service composition. This will help make up for any performance loss that may result from splitting the three components into separate services.

정답:D


질문 # 13
S90.08B-f9637a436b9107be889afea1dd5f032e.jpg
Service A is a task service that sends Service B a message (2) requesting that Service B return data back to Service A in a response message (3). Depending on the response received, Service A may be required to send a message to Service C (4) for which it requires no response.
Before it contacts Service B, Service A must first retrieve a list of code values from its own database (1) and then place this data into its own memory. If it turns out that it must send a message to Service C, then Service A must combine the data it receives from Service B with the data from the code value list in order to create the message it sends to Service C. If Service A is not required to invoke Service C, it can complete its task by discarding the code values.
Service A and Service C reside in Service Inventory A. Service B resides in Service Inventory B.
You are told that the services in Service Inventory A were designed with service contracts that are based on different design standards and technologies than the services In Service Inventory B. As a result,Service A is a SOAP-based Web service and Service B Is a REST service that exchanges JSON-formatted messages.
Therefore, Service A and Service B cannot currently communicate. Furthermore, Service C is an agnostic service that is heavily accessed by many concurrent service consumers. Service C frequently reaches its usage thresholds, during which it is not available and messages sent to it are not received.
What steps can be taken to solve these problems?

  • A. The Data Format Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data format to another at runtime. The Asynchronous Queuing pattern can be applied to establish an intermediate queue between Service A and Service B so that when Service A needs to send a message to Service B, the queue will store the message and retransmit it to Service B until it is successfully delivered. The Service Reusability principle can be further applied to Service C together with the Redundant Implementation pattern to help establish a more reusable and scalable service architecture.
  • B. The Data Model Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data model to another at runtime. The Intermediate Routing and Service Agent patterns can be applied so that when Service B sends a response message, a service agent can intercept the message and, based on its contents, either forward the message to Service A or route the message to Service C. The Service Statelessness principle can be applied with the help of the State Repository pattern so that Service A can write the code value data to a state database while it is waiting for Service B to respond.
  • C. The Data Format Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data format to another at runtime. The Asynchronous Queuing pattern can be applied to establish an intermediate queue between Service A and Service C so that when Service A needs to send a message to Service C, the queue will store the message and retransmit it to Service C until it is successfully delivered. The Service Autonomy principle can be further applied to Service C together with the Redundant Implementation pattern to help establish a more reliable and scalable service architecture.
  • D. The Data Model Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data model to another at runtime. The Intermediate Routing and Service Agent patterns can be applied so that when Service B sends a response message, a service agent can intercept the message and, based on its contents, either forward the message to Service A or route the message to Service C. The Service Autonomy principle can be further applied to Service C together with the Redundant Implementation pattern to help establish a more reliable and scalable service architecture.

정답:C

설명:
Explanation
The problem is that Service A and Service B are using different technologies and cannot communicate.
Therefore, an intermediate processing layer can be established that can transformmessages from one data format to another at runtime. This can be achieved using the Data Format Transformation pattern.
Additionally, Service C frequently reaches its usage thresholds and is not always available, so an Asynchronous Queuing pattern can be applied to establish an intermediate queue between Service A and Service C. This queue will store the messages sent by Service A to Service C and retransmit them until they are successfully delivered. This approach improves the reliability of the system.
Moreover, the Redundant Implementation pattern can be applied to Service C to ensure its availability and scalability, and the Service Autonomy principle can be applied to make Service C independent of other services.


질문 # 14
Refer to Exhibit.
S90.08B-52c18970e02ab2fc4ece71686cd4b3ba.jpg
Service A is an entity service that provides a set of generic and reusable service capabilities. In order to carry out the functionality of any one of its service capabilities, Service A is required to compose Service B (1) and Service C (2), and Service A is required to access Database A (3), Database B (4), and Database C (5). These three databases are shared by other applications within the IT enterprise.
All of service capabilities provided by Service A are synchronous, which means that for each request a service consumer makes, Service A is required to issue a response message after all of the processing has completed.
Service A is one of many entity services that reside In a highly normalized service Inventory. Because Service A provides agnostic logic, it is heavily reused and is currently part of many service compositions.
You are told that Service A has recently become unstable and unreliable. The problem has been traced to two issues with the current service architecture. First, Service B, which Is also an entity service, is being increasingly reused and has itself become unstable and unreliable. When Service B fails, the failure is carried over to Service A.
Secondly, shared Database B has a complex data model. Some of the queries issued by Service A to shared Database B can take a very long time to complete.
What steps can be taken to solve these problems without compromising the normalization of the service inventory?

  • A. The Redundant Implementation pattern can be applied to Service A, thereby making duplicate deployments of the service available. This way, when one implementation of Service A is too busy, another implementation can be accessed by service consumers instead. The Service Data Replication pattern can be applied to establish a dedicated database that contains an exact copy of the data from shared Database B that is required by Service A.
  • B. The Redundant Implementation pattern can be applied to Service A, thereby making duplicate deployments of the service available. This way, when one implementation of Service A is too busy, another implementation can be accessed by service consumers instead. The Service Statelessness principle can be applied with the help of the State Repository pattern In order to establish a state database that Service A can use to defer state data it may be required to hold for extended periods, thereby improving its availability and scalability.
  • C. The Redundant Implementation pattern can be applied to Service B, thereby making duplicate deployments of the service available. This way, when one implementation of Service B is too busy, another implementation can be accessed by Service A instead. The Data Model Transformation pattern can be applied to establish a dedicated database that contains an exact copy of the data from shared Database B that is required by Service A.
  • D. The Redundant Implementation pattern can be applied to Service B, thereby making duplicate deployments of the service available. This way, when one implementation of Service B is too busy, another implementation can be accessed by Service A instead. The Service Data Replication pattern can be applied to establish a dedicated database that contains a copy of the data from shared Database B that is required by Service A. The replicated database is designed with an optimized data model to improve query execution performance.

정답:D

설명:
This solution addresses both issues with the current service architecture. By applying the Redundant Implementation pattern to Service B, duplicate deployments of the service are made available, ensuring that when one implementation fails, another can be accessed by Service A. Additionally, the Service Data Replication pattern can be applied to establish a dedicated database that contains a copy of the data from shared Database B that is required by Service A. This replicated database is designed with an optimized data model to improve query execution performance, ensuring that queries issued by Service A to the database can complete more quickly, improving the overall stability and reliability of Service A. By applying these patterns, the problems with Service A can be solved without compromising the normalization of the service inventory.


질문 # 15
......

Itexamdump의SOA S90.08B덤프는 레알시험의 모든 유형을 포함하고 있습니다.객관식은 물론 드래그앤드랍,시뮬문제등 실제시험문제의 모든 유형을 포함하고 있습니다. SOA S90.08B덤프의 문제와 답은 모두 엘리트한 인증강사 및 전문가들에 의하여 만들어져SOA S90.08B 시험응시용만이 아닌 학습자료용으로도 손색이 없는 덤프입니다.저희 착한SOA S90.08B덤프 데려가세용~!

S90.08B인증시험대비자료: https://www.itexamdump.com/S90.08B.html

2023 Itexamdump 최신 S90.08B PDF 버전 시험 문제집과 S90.08B 시험 문제 및 답변 무료 공유: https://drive.google.com/open?id=1rXqUc7rYBWCNs0nfS62Y0XKM5AdEL6JR

ExolTechUSexo_33c136dd4dce9b823645599755e3e8be.jpg